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Non-uniform Learnability

Definition

We say that a hypothesis h is (ϵ, δ)-competitive with another
hypothesis h′ if the following holds:

Pr [R(h) ≤ R(h′) + ϵ] ≥ 1− δ.

Definition

A hypothesis class H is said to be non-uniformly learnable if there
exists an algorithm A, and a function mH : (0, 1)2 ×H → N so
that for every ϵ, δ ∈ (0, 1) and every h ∈ H, if we take a sample S
with size m ≥ mH(ϵ, δ, h), then for every distribution D, we have
that, A(S) is (ϵ, δ)-competitive with h.

In the case of agnostic PAC learning, R(A(S)) ≤ minh′∈H R(h′)
+ϵ ≤ R(h) + ϵ held for a sample size that doesn’t depend on
hypothesis h. But in non-uniform learning, the sample size depends
on the hypothesis h with which A(S) is competing.
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Characterization of Non-uniform Learning

Theorem

A hypothesis class H of binary classifiers is non-uniformly learnable
if and only if it is a countable union of agnostic PAC learnable
hypothesis classes.

Theorem

If H1,H2, · · · is a countable collection of hypothesis classes where
each has the uniform convergence property, then their union is
non-uniformly learnable.

Example

Let’s say we are trying to solve the problem of binary classification
with polynomials. Let’s say H =

⋃
n∈NHn where Hn is the set of

all polynomials with degree exactly n. It’s easy to prove that
VCdim(Hn) = n + 1. So, VCdim(H) = ∞. Using the above
theorems, we can say that H is non-uniformly learnable, but yet it
is not agnostic PAC learnable because of it’s VC dimension.
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Structural Risk Minimization

In the ERM paradigm, we have chosen any hypothesis that gives
the minimum empirical error. But notice that,

R(h) ≤ RS(h) +

√
log |H|+log 2

δ
2m

Therefore, if two hypothesis classes give the same empirical error,
the true risk is minimized by a hypothesis class that has a smaller
size or a smaller encoding length. Let’s say Hn is the hypothesis
class containing all polynomials of degree at most n. Then,
H1 ⊂ H2 ⊂ H3 ⊂ · · · . If all of the hypothesis classes give similar
empirical error, then we prefer the one with the smallest size. So,
we want to be biased towards a particular hypothesis class by
giving each hypothesis class a weight so that

∑∞
n=1 wn ≤ 1.

Let’s say H =
⋃

n∈NHn where each Hn satisfies the uniform
convergence property for a sample size called mH(ϵ, δ). Now let’s
define:

ϵn(m, δ) = min{ϵ ∈ (0, 1) : mH(ϵ, δ) ≤ m}
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SRM Continued

This is the smallest achievable gap between the empirical error and
the generalization error if trained with a sample of size m. Since,
uniform convergence holds, we have that, with probability of at
least 1− δ:

∀h ∈ Hn, |RD(h)− RS(h)| ≤ ϵn(m, δ).

Lemma

From here, it can be inferred that for all h ∈ Hn,

Pr [|RD(h)− RS(h)| ≤ ϵn(m,wn.δ)] ≥ 1− wn.δ ≥ 1− δ

We can also prove that, for all h ∈ H,

Pr [|RD(h)− RS(h)| ≤ minn:h∈Hn ϵn(m,wn.δ)] ≥ 1− δ

Proof: Pr [|RD(h)− RS(h)| ≤ minn:h∈Hn ϵn(m,wn.δ)]
= Pr [

⋂
n:h∈Hn

|RD(h)− RS(h)| ≤ ϵn(m,wn.δ)]
= 1− Pr [

⋃
n:h∈Hn

|RD(h)− RS(h)| ≥ ϵn(m,wn.δ)]
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The Structural Risk Minimization Paradigm

≥ 1−
∑

n:h∈Hn
Pr [|RD(h)− RS(h)| ≥ ϵn(m,wn.δ)]

≥ 1−
∑

n:h∈Hn
wn.δ ≥ 1− δ

∑
n:h∈Hn

wn ≥ 1− δ. Let’s define,
n(h) = min{n : h ∈ Hn}. Since, we have that,
|RD(h)− RS(h)| ≤ minn:h∈Hn ϵn(m,wn.δ) ≤ ϵn(h)(m,wn(h).δ),
we want to find a hypothesis that minimizes
RS(h) + ϵn(h)(m,wn(h).δ).

Algorithm 1 Structural Risk Minimization

Prior knowledge: H =
⋃

n Hn where Hn has the uniform conver-
gence property.
wn ∈ (0, 1)where

∑
n wn ≤ 1

Input: training set S ∼ Dm, confidence parameter δ
Output: h ∈ argminh∈H[Rs(h) + ϵn(h)(m,wn(h).δ)]

Now, how do we define the weights? In the next slides, we will
develop a notion called ’minimum description length’ to do that.
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Minimum Length Encoding

In this paradigm, we are interested in the hypothesis that has the
minimum description length, yet it admits a small empirical error.
We will define a description language for the hypotheses that is
prefix-free. It means that, the description of one hypothesis can
never be a prefix of another hypothesis. Let’s say the alphabet of
the language is Σ = {a, b}. And d(H) = {aab, ba, bb}. Let’s say
if h is a hypothesis, then |d(h)| is the description length of the
hypothesis. We can prove that,

∑
h∈H

1
2|d(h)|

≤ 1. In this example,
the maximum length of a description is 3. So, the prefix ba covers
both baa and bab. bb covers both bba and bbb. Let’s say, if H
included all of {aaa, aab, aba, abb, baa, bab, bba, bbb}, then∑

h∈H
1
23

= 1. But H doesn’t always include all strings of length 3.
And since, H is a prefix-free set, ba and bb covers all of the last 4
strings. But aab covers only one of the first 4 strings. So, the
strings of d(H) contains k ≤ 2m where m is the maximum length
of a description. So, we can say that,

∑
h∈H

1
2|d(h)|

= k
2m ≤ 1.
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Frame Title

From the above fact, we can give each hypothesis a weight of
w(h) = 1

2|d(h)|
. A few lectures ago, we proved that,

R(h) ≤ RS(h) +

√
log 2

δ
2m holds with probability at least 1− δ. So,

using the above lemma, we get, R(h) ≤ RS(h) +

√
− logw(h)+log 2

δ
2m

holds with probability at least 1− w(h)δ ≥ 1− δ. If we take
w(h) = 1

2|d(h)|
, then we get the following:

R(h) ≤ RS(h) +

√
|d(h)| ln 2+log δ

2
2m < RS(h) +

√
|d(h)|+log δ

2
2m

Algorithm 2 Minimum Description Length

Prior knowledge: H =
⋃

n Hn where each Hn has only a single
hypothesis.
Input: training set S ∼ Dm, confidence parameter δ

Output: h ∈ argminh∈H[Rs(h) +

√
|d(h)|+log δ

2
2m ]
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The Discretization Trick

We have a good estimate for the sample complexity necessary to
learn finite hypothesis classes and that’s:

m ≤ log |H|+log 2
δ

ϵ2

But for infinite hypothesis, we can get a glimpse of a practical
sample complexity needed to learn infinite hypothesis classes. Let’s
recall the threshold functions H = {1x≤θ : θ ∈ R}. This is an
infinite hypothesis class consisting of one parameter. But in
practice, in most of the programming languages, these parameters
are stored using 64 bits. So, in that case, |H| ≤ 264d where d is
the number of parameters necessary to represent the hypothesis
class. Using this in the equation above, we get:

m ≤ 64d+log 2
δ

ϵ2
=

( 64d+log 2

log 1
δ

+1) log 1
δ

ϵ2
=

g(d) log 1
δ

ϵ2

where g(d) is an increasing function of d .
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Model Selection Using SRM

Let’s say H =
⋃

n∈NHn is the set of all polynomial regressors
where Hn is the hypothesis class containing all polynomials of
degree at most n. So, in order to express Hd we need d + 1
parameters. Let’s give each Hd a weight of wd = 6

π2d2 . We know
that, with probability more than 1− δ, for every h ∈ Hd :

R(h) ≤ RS(h) +

√
g(d) log 1

wd .δ

m = RS(h) +

√
g(d)(log π2d2

6δ
)

m

If we use SRM with the above upper bound, if hn ∈ Hn performs
as good as hm ∈ Hm with n < m, then SRM is going to choose hn
because it’s less complex. But in practice, the bound on the right
hand side is unrealistic and pessimistic. So, in the next slide, we
will see a more practical approach for selecting a model.
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Validation

The upper bounds for the true error that involve the empirical error
might be too pessimistic. If we need a more tighter bound and if
data is abundant, then we can hold out a portion of the dataset for
estimating the risk of a hypothesis. This portion is called the
hold-out set or the validation set. The rest of the dataset is called
the training dataset. We train our algorithm on the training
dataset and test it on the validation dataset to estimate the true
error. And this is a better estimate than the empirical error
because the learner can be biased towards the training dataset. If
the size of our validation data is mv , then with probability more
than 1− δ, we can say using Hoeffding’s inequality:

RD(h) ≤ RV (h) +

√
log 2

δ
2mv

where RV (h) is the error in the validation data. Since, mv is in the
range of m, the bound on the right side is tighter than a typical
bound involving the empirical risk.
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Model Selection Using Validation

We can run a number of different algorithms on a dataset to learn
a hypothesis class H. Let’s say that these algorithms output the
following hypotheses H′ = {h1, h2, · · · , hf }. Then we determine
the errors of these hypotheses on the validation dataset. We pick
the hypothesis that makes the minimum mistakes on the validation
set. We can prove the following using union bound as we did in
the case of finite hypothesis classes:

Pr [∀h ∈ H′, RD(h) ≤ RS(h) +

√
log |H′|+log 2

δ
2mv

] ≥ 1− δ.
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Model Selection Using Validation contd.

In the above image, we can see three polynomials of degree 2, 3
and 10 respectively. The 2 degree polynomial is the red curve. The
blue curve has degree 3. And the black curve has degree 10. The
dark points indicate the training set. The hollow points indicate the
validation set. We can see from the diagram that the polynomial
with degree 10 leads to over-fitting. It admits no error on the
training set. But even though polynomial of degree 3 admits some
errors in the training set, it performs better in the validation set. In
the image below, x axis represents polynomial degree and y axis
represents error. It’s evident that higher degrees lead to overfitting.
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K-fold Cross Validation

Most of the time, data is scarce. So, we don’t have the luxury of
wasting data on validation. But we can divide the dataset into k
equal chunks. We can then choose any chunk as the validation
data, and train the algorithm on the rest of the chunks. We do
this for all of the chunks. And in the end, we take the average of
these validation errors to compute the final validation error. K-fold
cross validation is often used to tune hyper-parameters. If k = m,
we call this procedure ”leave one out” because the hold-out set
consists of just one data instance. In most of the situations, k-fold
cross validation works very well. But there are situations where
k-fold cross validation might fail.
Usually, we divide our dataset into 3 parts, namely - training data,
testing data and validation data. We train on the training data,
tune hyper-parameters and select models using the validation data
and test our hypothesis on the testing data.
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What To Do If Learning Fails

1 Increase data volume

2 Weed out noisy data and features
3 Change hypothesis class by

enlarging it
reducing it
completely changing it
changing the parameters

4 change the feature representation of the data

5 change the optimization algorithm
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