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The Risk of Empirical Risk Minimization

Since the testing data isn't available to the learner during training,
the only tool to measure performance is the empirical error. But
the training data could give us a very misleading picture of the
whole domain. Thus the learner could be misled trying to wholly
adapt to the training samples. The learning paradigm that tries to
minimize empirical risk is called the ERM paradigm. In the image
below, we can see that the rightmost predictor most accurately
describes the training data. But the true distribution of the data
might not follow this peculiar curve. So, to be safe, the second
predictor is our best option.
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ERM with Inductive Bias

In the previous slide, we saw that the ERM approach could be very
misleading. If we put no restriction on the set of possible
hypotheses, we could end up with the most bizarre hypothesis
that's just perfect for the training data but fails miserably during
testing. So, only if we could find a good class of non-bizarre
hypotheses called H, we could just choose one that minimizes the
empirical error over the training set S. And that hypothesis is
called ERMy.

ERMy(S) € arg minpey Rs(h)

This choice of hypotheses introduces a bias towards a particular set
of predictors. This is called inductive bias. ERM with inductive
bias is one of the remedies for overfitting. The more restricted a
hypothesis class is, the more biased our learner is. The less
restricted a hypothesis class is, the more likely it is that we will end
up with an overfitting hypothesis. In this course, we will learn how
to find a good hypothesis set.
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ERM Application: Axix-aligned Rectangles
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Suppose, a military school is looking for applicants that have their
weight and height within a specific range. Let's say an accepted
candidate’s height is x and their weight is y. So, for some
X1, X2, 1, ¥2, X1 < x < xp and y; < y < y». But to an outsider,
X1, X2, Y1, y» are hidden. They can only see which applicants were
taken and which were discarded. In the above diagram, the blue
rectangle is the true decision boundary. Can we find an algorithm
so that given any training sample, it can find a hypothesis that can
perform arbitrarily well depending on the sample size with a very
high probability?



Axis-aligned Rectangles contd.
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An obvious choice of H would be the set of all axis-aligned
rectangles. If our learning algorithm chooses the rectangle h with
the minimum area that contains all the blue points, then definitely
Rs(h) = 0. If we test this rectangle with a test set, the only way it
can make mistakes is by classifying the points that fall outside

h = R’ but inside R as red. We want to find an upper bound for
the likelihood of this kind of error. We want that Pr[R(h) > €] < 4§
for arbitrarily small but positive € and §.
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Axis-aligned Rectangles contd.
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Let's connect the corners of the outer and inner rectangles with
red lines. Let's say, the probability that a point falls into region A
is a. Similarly define b, c,d. So, the total probability of making a
mistake is a+ b+ c+ d.

Pr[R(h) > €] = Prla+ b+ c+d > ¢
<Prla>gVvb>gVve>gvd>g]

< Prla> g+ Prlb> g]+ Pr[c > §] + Pr[d > £] (union bound)
<A4Prla> §] <4(1—-§)7 <4ei =§(eX>1+x, VxeR)
Solving for m gives, m > %Iog %. So, if we want 99% accuracy
with 99% confidence, then we only need m = 557 log 557 = 1040
points.
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ERM with Finite Hypothesis Classes

The most obvious way to restrict a hypothesis class is to put
restrictions on its size. For now, we focus on hypothesis classes
that are finite in size.

Consistency Assumption

A hypothesis class H is said to be consistent if there exists a
hypothesis h so that R(h) = 0. This is also called the realizability
assumption. Obviously Rs(h) = 0 for any sample S.

I.1.D. Assumption

We will also assume that the instances of the dataset are
independent of each other and have an identical probability
distribution.
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Learning Guarantees for Consistent and Finite Hypothesis
Classes

Learning Guarantee: Finite and Consistent Scenario

Let H be a finite and consistent hypothesis set that contains the
target concept c. Let A be an algorithm such that for any sample
S, it returns a hypothesis h € H so that Rs(h) = 0. Then we can
say that for any positive 0 < €, < 1, there exists a minimal
sample size m > L(log |H| + log 1) so that if we take any sample
of size m, then the algorithm will return such a hypothesis h so
that Pr[R(h) < €] can hold with at least 1 — § probability.

Proof: Pr[3h € H: Rs(h) =0A R(h) > ¢

<> hen Pr[Rs(h) = 0 A R(h) > €] (Union bound)

< X hen PriRs(h) = 0|R(h) > €] (P(A A B) < P(A[B))
<|H|(1—€)" <|HleT™=46. (e*>1+4+x, VxeR)
Solving for m yields the desired bound.
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When is a problem PAC-learnable?

The PAC Learning Framework

A concept class C is said to be PAC-learnable if there exists an
algorithm A that can return a hypothesis h for any concept ¢ € C,
any sample S, any € > 0 and any § > 0, so that if we make the
sample size sufficiently large ( m > poly(%, %, n,|C|) ), then the
following holds:

PriR(h) < € >1-35

where m is the sample size and n is the number of features. poly is
a polynomial function. If A runs in (’)(po/y(%, %, n,|C])) run-time
complexity, then C is said to be efficiently PAC-learnable.

In the last lecture, we saw that the problem of learning axis-aligned
rectangles is PAC-learnable. The concept class and the hypothesis
class in that example were identical. PAC stands for Probably

(> 1 — &)Approximately (< €)Correct.
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Example: Conjunction of Booleans
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In the above picture, the first six columns
represent six variables xj, x2, X3, X4, X5, Xg. I he rightmost column
contains the label. + means 1 and - means 0. The concept we are
trying to learn is the conjunction of these variables or their
negations or their absence, for example: x; A X2 A x4 A\ x5 A\ Xg OF
just X1 A X3. It's a boolean expression. But we don’t know which
one it is. One the expressions that satisfy the given dataset is:

X1 A xo A x5 A Xg. In the test example, we have x; = 0,x = 1,

x5 = 1,xg = 1. So, our prediction will be 0A1A1AL=1. Is this
concept class PAC-learnable if it has n boolean variables?
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Conjunction of Booleans: Proof of Learnability

Obviously the concept class is large. |H| = |C| = 3". Because each
of the variables can be in 3 forms {x, X, nothing}. Can we find
such an algorithm that can always return a consistent hypothesis?
Yes. Look at the rows with a positive label. If a variable has a
value of 0, then it can’t be in the x form. If a variable has a value
of 1, then it can't be in the X form. So, by checking all the
positive rows, we can discard the possible forms of each variable.
In the end, if a variable has both x and X forms discarded, then the
variable is discarded from the expression. Otherwise, it can remain
through one of its remaining forms. If it has both forms intact,
then it doesn’t appear in the expression. Now, is the sample size
still valid for PAC-learning? From the last lecture m = 1

(log |H| + log 3) = % (nlog3 + log 3) = poly(L, %, n). So, this
concept class is definitely PAC-learnable.
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Learning Guarantees for Finite and Inconsistent Hypothesis

Classes

In most cases, our hypothesis class may not contain the target
concept. It may not even contain a hypothesis that is error-free in
the training sample. That isn't too bad. Since it admits some
error, we can also be relieved that our hypothesis isn't overfitting.
But can we derive any learning guarantees? If the data instances
are independent and identically distributed, yes. In that case, the
true error being arbitrarily distant from the empirical error is very
unlikely. In fact, the following holds:

Learning Guarantee with IID samples

If we are talking about binary classifiers tested with a sample S of
size m, then,

Pr[|R(h) — Rs(h)| > €] < 0 e—2me?
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Learning Guarantee: Proof

Proof.

It's obvious that, Rs(h) is an unbiased estimate of R(h) because
Es.p[Rs(h)] = R(h). Since we are dealing with binary classifiers,
the error lies in the set {0,1}. Let Xj, X5, X3, -+, X; be the error
of the m data points. Define S = X7 + X5 + - -- + X;,. Since the
data points are I.1.D., we can assume that the errors are random
variables taking values in the range [0, 1]. By using

Hoeffding’s Inequality, we can say that,

Pr[|S — E[S]| > me] < 2e—2m

Pri|2 — EBl| > ] < 2e=2m¢

Pr{|S — E[Z]| > €] < 2e2™¢
Pr[|Rs(h) — R(h)| > ¢] < 2e2m¢’

O
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https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

Learning Bounds for Finite Inconsistent Hypothesis Classes

Generalization Bound - Fixed Hypothesis

Pr[|Rs(h) — R(h)| > ¢] < 2e=2m<* = §
Prl|Rs(h) — R(h)| <] >1—2e2m =14
Solving for € yields that the following holds with probability at

least 1 — §:
Iogg
R(h) < Rs(h) + 1/ 5.

But the above bound holds for a fixed hypothesis h. But what
about hg returned by the learning algorithm? Can we say the same
about that hypothesis? No. Because when h is fixed,

Es[Rs(h)] = R(h). But Es[Rs(hs)] # R(hs) because on the left
side, every time we take a different sample S for the expectation,
we get a different hg returned by the algorithm which might be
different from the hs of the right-hand side. So, we need to derive
a wider bound that holds for all hypotheses in H.
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Learning Bounds for Finite Inconsistent Hypothesis Classes

Generalization Bound for a Whole Hypothesis Class

Let H be a finite hypothesis class of binary classifiers. Then for
any 0 > 0, with probability at least 1 — ¢ the following holds:

2
Whe H, R(h) < Rs(h)+/ litlees

Privh € H, |R(h) — Rs(h)| < €]
=1—Pr[3h e H, |R(h)— Rs(h)| > €]
=1~ Pr(IR(n) — Rs(m)| > ) V-V (IR(hp) — Rs ()] > ]
2 1= hen PriIR(h) — Rs(h)| = €]
>1—2Hle2™" =14
Solving for € yields the aforementioned result.

Proof:
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Extensions to PAC: Bayes Error

In the deterministic scenario, given a feature vector x, there is a
unique label y = f(x). So, the hypothesis we are trying to learn is
a function f. But, let’s say, we are trying to find a correlation
between the height and weight of a person with their propensity to
have diabetes. Let's say, the height of a person is 171cm and the
weight of a person is 65 kg, we want to predict whether they have
a risk for diabetes. Now, the dataset may contain the record of 125
people who have the same height and weight combination. And
100 of them didn't have diabetes but 25 did. In this case, we can't
find a deterministic function to describe the dataset. The best we
can do is we can caIcuIate a distribution P(y = NO|x) = 132 and
P(y = YES|x) = 2. And an obvious classifier would be

f(x) = arg maxyey P(y]x) This is hypothesis is called the Bayes
hypothesis. The Bayes hypothesis gives the minimum possible
error which is R* = min{P(y = YES|x), P(y = NO|x)}.
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Extensions to PAC: Nonrealizability

The Bayes error R* is unknown because the true distribution
P(y|x) is unknown. We only know P(y|x) from the dataset. In
this stochastic scenario, there's no hypothesis that can yield a
generalization error of 0. So, we can't arbitrarily reduce the error
by increasing the sample size. But we can compare the
generalization error of a hypothesis with the Bayes error.

R(h) = R« = R(h) — min R(h) + min R(h) — R

estimation approximation

The approximation error is the comparison of the performance of
the best hypothesis in class with that of the absolute best
hypothesis. It's a property of the hypothesis set. It's unknown
because the Bayes hypothesis is unknown. And the estimation
error is the property of an individual hypothesis of set H. If we
apply ERM, the estimation error of the hypothesis returned can be
bound.
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Estimation Error Bound for ERM

Let's say we are applying ERM on a dataset S of size m and the
scenario is stochastic. Let's say hx is the best hypothesis in class.
But we might not be able to tell which one it is because we don't
know the true distribution of the data.

R(hERM) — R(h%) = R(hERM) _ RS(hERM) + Rs(hERM) — R(hx)
< R(hERMY — Rs(hERMY 1 Rg(hx) — R(hx)
< 2suppep |R(h) — Rs(h)|

log \H|+Iog%
2m

<2

So, even though we cannot arbitrarily reduce the true error of a
hypothesis in the stochastic scenario, we can at least make the
true error converge to that of the best hypothesis in class. That's
what we will aim to do in agnostic PAC learning.
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Agnostic PAC-learning

In order to generalize the concept of learning:

@ We will replace the deterministic functions h : X — ) with a
joint distribution D over X x ). So the concept class C
disappears.

@ Instead of having a function h(x) = y, we will compute
distributions P(y|x).

© R(hs) will be compared against R(hx*) where
hx = arg minpey R(h).

Agnostic PAC-learning

Let H be a hypothesis set and D be a distribution over X x ). If
for any sample S with size m > poly(%, %, n,|H|), any € > 0 and
any 6 > 0, there is an algorithm A so that the following holds:

Prs~pm[R(hs) — minpcy R(h) < e > 1 -6

then A is said to be an agnostic PAC-learning algorithm.
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2
R(h) < Rs(h) + / &litle s

In the above formula, we can see that the generalization error is
bounded from above by the empirical error Rs(h) and a function of
H,d, m. The larger the hypothesis set, the larger the scope of
error. But we don't want to make the hypothesis set very small
either because that will increase the empirical error. Also, if the
sample size m is small, then it's highly likely that we will end up
with a dubious and complex hypothesis. And that will lead to
overfitting. If two hypothesis sets yield the same empirical error on
a dataset, then the one with the smaller size gives a better
generalization guarantee. An explicit restriction on the size of the
hypothesis class puts an implicit restriction on the dimension and
complexity of the hypothesis set as well.
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Uniform Convergence

During ERM, we select a hypothesis that minimizes the empirical
error. We only hope that this particular hypothesis will minimize
the generalization as well. From this, we can derive a sufficient
condition for learnability and that’s called uniform convergence.

e-representativeness

A training set S is said to be e-representative with respect to a
domain Z = X x ), a distribution D over Z, a hypothesis class
H, and a loss function Z if:

VheM, |Rs(h)— Rp(h) <e

This is a property of the sample S. If it gives an empirical error
that's very close to the generalization error, then this sample gives
a good glimpse of the true distribution. That's why any hypothesis
chosen by ERM will perform well in the distribution D.
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Uniform Convergence contd.

Lemma 1

Assume that a training set S is §—representative with respect to
domain Z, distribution D, hypothesis class H, loss function £.
Then the output hypothesis of ERM namely hs = ERMy/(S)

€ arg minpey Rs(h) satisfies:

Rp(hs) < minpey Rp(h) + €

Proof: Let's say, hx be one of the best in class hypotheses. In
other words, hx € arg minyey Rp(h). So, we have to prove that
Rp(hs) — Rp(h*) <e.

Rp(hs) — Rp(h*)

= Rp(hs) — Rs(hs) + Rs(hs) — Rp(hx)

< Rp(hs) — Rs(hs) + Rs(hx) — Rp(hx)

< |Rp(hs) = Rs(hs)| + [Rs(hx) — Rp(h*)|

<s5+5=c¢
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Agnostic PAC-learnability with Uniform Convergence

Uniform Convergence

A hypothesis class H is said to have the uniform convergence
property with respect to a domain Z and a loss function ¢, if there
exists a sample size m(e, d) so that for any distribution, any ¢, and
any 0, if we take a sample of size m(e, d), then with probability at
least 1 — 9, S is e—representative. Finite hypothesis classes have
uniform convergence. We proved it in the last lecture. Remember?

Lemma 2

If a class has the uniform convergence property, then it's agnostic
PAC-learnable.

Proof: Since H has the uniform convergence property, then with

probability at least 1 — §, any sample drawn from Z according to

D is e—representative. And since, any S is € — representative, if we

apply ERM on H with sample S, then according to lemma 1,
Rp(hs) < minpey Rp(h) + 2¢
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