
Lecture 5: The Computational Complexity of
Learning

CSE 427: Machine Learning

Md Zahidul Hasan

Lecturer, Computer Science
BRAC University

Spring 2023

Md Zahidul Hasan Machine Learning

Efficient PAC Learning

Definition

We define a learning problem as a triplet (Z ,H, ℓ) where Z is a
domain, H is a hypothesis set, and ℓ is a loss function. A is a
learning algorithm that learns from a sample S of size m. Let’s say,
Z has n features. Then A is said to be an efficient PAC learning
algorithm if:

1 for any 1 > ϵ, δ > 0 and any distribution D over Z ,
Pr [R(hS) ≤ minh∈H R(h) + ϵ] ≥ 1− δ.

2 A runs in poly(1ϵ ,
1
δ , n, |H|).

Example

Let’s say we are talking about n dimensional axis-aligned
rectangles.

ha1,a2,··· ,an,b1,b2,··· ,bn(x1, x2, · · · , xn) =

{
1 ∀i ∈ [n], ai ≤ xi ≤ bi

0 otherwise

Md Zahidul Hasan Machine Learning

Axis-aligned Rectangles: Realizable Case

Realizable Case: For every axis i , let’s choose the smallest value
of xi across all m data points. Let’s call it pi and let’s choose the
largest value of xi in the same dimension. Let’s call it qi . Now, if
we define the rectangle as
{(x1, x2, · · · , xn) : ∀i ∈ [n], xi ∈ R ∧ pi ≤ xi ≤ qi}, then the
empirical error is zero. It takes O(m) complexity to find the
maximum and the minimum in a single dimension. The input is n
dimensional. Hence the complexity of the approach is O(mn).
Since, we know that for the problem to be PAC-learnable,
m ≥ 4

ϵ log
4
δ , therefore, the complexity is O(4nϵ log 4

δ) which is a
polynomial function of 1

ϵ ,
1
δ , n. So, the problem of learning

n-dimensional axis-aligned rectangles is efficiently PAC-learnable in
the realizable case.

Md Zahidul Hasan Machine Learning

Axis-aligned Rectangles: Agnostic Case

Agnostic Case: Suppose we are given a sample of m points.
Since there is no such axis-aligned rectangle that can give us 0
error in the training sample, we need to find one that minimizes
the empirical error. Let’s say we pick a rectangle that has no
points from the sample on its boundaries. Then we can shrink this
rectangle until it contains at least one point on each of its 2n
boundaries if the rectangle contains at least one point inside its
boundaries. Both rectangles have the same empirical error. Hence
we can use 2n points to define a rectangle. So, there will be
k =

(m
2n

)
< m2n different rectangles. By exhaustively using each of

these rectangles as a hypothesis, we can find the rectangle that
minimizes the empirical error. For each of these hypotheses, it
takes O(m) operations to check whether the m points lie inside or
not. So, the overall complexity is

(m
2n

)
×m, roughly O(mn). So,

even though it’s polynomial in m given that n is bounded. But it’s
still not polynomial in n. This problem is in NP.

Md Zahidul Hasan Machine Learning

Other Examples

Boolean Conjunctions: In this problem we are trying to learn the
following boolean conjunction where for 1 ≤ i ≤ n, xi ∈ {0, 1}:
f (x1, x2, · · · , xn) = ϕ1(x1) ∧ ϕ2(x2) ∧ · · · ∧ ϕn(xn) where each of
these ϕi (xi) either returns xi as it is, or it negates and returns x̄i or
it just makes xi disappear from this expression (or you could say it
always returns 1). We are given the output of these functions for
m samples. We need to learn for each i , which ϕi (xi) does what.

Realizable Case: DIY. Prove that it can be done in O(mn)
complexity. And then express m in terms of n, δ, ϵ.

Agnostic Case: No polynomial time solution unless P = NP.

k-Term DNF: Here, we need to learn the boolean disjunction of k
terms where each of the terms are boolean conjunctions of at most
n variables. For example, if n = 3 and k = 2, one such expression
could be (x̄1 ∧ x2) ∨ (x1 ∧ x̄2 ∧ x3). It has no polynomial time
solution unless NP = RP which means Randomized
Polynomial-time.

Md Zahidul Hasan Machine Learning

k-CNF

k-CNF is the conjunction of an arbitrary number of terms where
each term is a disjunction of at most k boolean variables. For
example, T1 ∧ T2 ∧ · · · ∧ Tr where each Ti can have at most k
attributes or their negations. Ti could be (x1 ∨ x̄1 ∨ x4 ∨ · · · ∨ x̄k−1)
for example. We assume that all of these Ti s are unique because
a ∧ a = a. So, even if they were not unique, they could be made
unique. So, what is the maximum value of r? That’s the
maximum number of different boolean disjunctions possible from k
variables which is r ≤ s =

∑k
i=1

(2n
i

)
. Because there 2n boolean

items namely {x1, x2, · · · , xn, x̄1, x̄2, · · · , x̄n}. For each of the Ti ,
we could choose at most k of them. Let’s examine the asymptotic
behavior of

∑k
i=1

(N
i

)
.∑k

i=1 (
N
i)

(NK)
= 1 + k

N−k+1 + k(k−1)
(N−k+1)(N−k+2) + · · ·

≤ 1 + k
N−k+1 + k2

(N−k+1)2
+ · · · = N−k+1

N−2k+1 . When N is sufficiently

large, the right-hand side is 1. So,
∑k

i=1

(N
i

)
= O(

(N
k

)
).

Md Zahidul Hasan Machine Learning

K-CNF Continued

(N
k

)
is exponential in N because,(N

k

)
= N−k+1

1
N−k+2

2 · · · N−k+k
k .

For 1 ≤ x ≤ k, we have N−k+x
x = N−k

x + 1 ≤ N − k + 1 ≤ N. So,(N
k

)
≤ Nk . Therefore, |H| = 2s = 2

∑k
i=1 (

2n
i) ≤ 2(2n)

k
.

Algorithm: Let’s create a new dataset where the features are the
s disjunctions of length at most k . So, if the label is 1 and if a
feature has value 1, then the disjunction associated with that
feature is present in our expression. Pretty easy.
Complexity: The overall complexity is O(ms) = O(m(2n)k)
where m = 1

ϵ (log |H|+ log 1
δ) =

1
ϵ (2

knk log 2 + log 1
δ).

So, the final complexity is O((2n)
k

ϵ (2knk log 2 + log 1
δ)) which is a

polynomial function of 1
ϵ ,

1
δ and n.

Md Zahidul Hasan Machine Learning

Representation Matters: K-term DNF Revisited

A K-term DNF is the disjunction of exactly k terms where each
term is a conjunction of at most n boolean literals. Let’s say our
boolean features are x1, x2, · · · , xn. So, a k-term DNF would be
T1 ∨ T2 ∨ · · · ∨ Tk where Tk can be x1 ∧ x2 ∧ x̄2 ∧ · · · ∧ x4. Using
associativity of ∨, we can express the DNF as follows:
T1 ∨ T2 ∨ · · · ∨ Tk =

∧
x1∈T1,x2∈T2,··· ,xk∈Tk

(x1 ∨ x2 ∨ · · · ∨ xk).
This means that any k-term DNF can be expressed as a k-CNF of
r terms with r ≤ s = (2n)k . We know that a k-CNF can be

learned with |H| = 2(2n)
k
. So, the final complexity is

O((2n)
k

ϵ (2knk log 2 + log 1
δ)). So, k-term DNFs can be efficiently

learned which is contradictory to our previous findings. So, what’s
wrong? Notice that all k-term DNFs can be represented as k-CNFs
but not the other way around. So, we have just used a larger
hypothesis class than our initial choice. k-CNF has more
representational power than k-term DNFs and has a structure that
allows for efficient PAC-learning.

Md Zahidul Hasan Machine Learning

