
Lecture 6: Linear Models
CSE 427: Machine Learning

Md Zahidul Hasan

Lecturer, Computer Science
BRAC University

Spring 2023

Md Zahidul Hasan Machine Learning

Linearity and Affinity

Linear Functions and Affine Functions

Let x be a d-dimensional vector, w be a vector of d weights and b
be a real number, then the first one is a linear function and the
second one is an affine function:

hw (x) = ⟨w , x⟩ =
∑d

i=1 wixi

hw ,b(x) = ⟨w , x⟩+ b =
(∑d

i=1 wixi

)
+ b

If we append 1 to the end of the vector x and b to the end of the
weight vector w , then the affine function becomes a linear
function. Since xd+1 = 1 and wd+1 = b,

hw ,b(x) = ⟨w , x⟩ =
∑d+1

i=1 wixi .

When we extend x this way, it becomes a vector of homogeneous
d + 1 dimensional coordinate system. That which is a linear
function in a homogeneous coordinate system is an affine function
in a non-homogeneous coordinate system. b is called the bias.

Md Zahidul Hasan Machine Learning

Hyperplanes and Halfspaces

Hyperplanes and Halfspaces

In d-dimension, hyperplanes are defined by the following equation:

w1x1 + w2x2 + · · ·+ wdxd + b = 0

A d-dimensional hyperplane divides Rd into two halfspaces
depending on:

sign(⟨w , x⟩+ b)

We can easily use hyperplanes to classify a feature vector x . We
have already seen that in the case of non-homogeneous affine
hyperplanes the VC-dimension is d + 1. In the homogeneous case,
it’s d . We can learn the hyperplanes/halfspaces using ERM. In the
following slides, we discuss methods of finding solutions in the
realizable case i.e. linearly separable case. The non-realizable case
is computationally intractable.

Md Zahidul Hasan Machine Learning

https://en.wikipedia.org/wiki/Hyperplane

Linear Programming

LP

In Linear Programming, we try to maximize a linear objective
function subject to a set of linear inequalities represented by a
matrix multiplication:

maxw∈Rd ⟨w , u⟩ subject to Aw ≥ v

Linear programming problems can be solved efficiently with
commonplace implementations. In the linearly separable case, we
can convert our problem of finding a hyperplane that leads to zero
error on the training set to a linear programming problem. For
simplicity, let’s assume that we are using homogeneous coordinates
for feature vector x . So, a hyperplane can be hw (x) = ⟨w , x⟩. We
are looking for a w so that,

sign(⟨w , xi ⟩) = yi for all i ∈ [m]
in other words, yi ⟨w , xi ⟩ > 0 for all i ∈ [m]

Md Zahidul Hasan Machine Learning

Linear Programming to solve ERM

Since the points are separable using hyperplanes, such a w
definitely exists. Let’s say w∗ is one such vector. Let’s define,
γ = mini∈[m] yi ⟨w , xi ⟩ and let w̄ = w∗

γ . So, we have,

yi ⟨w̄ , xi ⟩ = 1
γ yi ⟨w∗, xi ⟩ ≥ 1

γγ = 1 for all i ∈ [m]

So, we have just arrived at the necessary conditions of our LP
problem. We can express all of the above inequalities as Aw ≥ v
where Ai ,j = yixi ,j where xi ,j is the j’th component of the i’th
vector xi . v is the vector of all ones i.e. (1, 1, · · · , 1).
Notice that, we are only looking for one such weight vector w . Any
one of them is fine. So, we don’t want to maximize any linear
objective function. So, we can pick any dummy vector such as
u = (0, 0, · · · , 0).

Md Zahidul Hasan Machine Learning

Perceptron for Halfspaces

The perceptron algorithm is due to Rosenblatt. We start with
a weight vector w = (0, 0, · · · , 0).
Our goal is to reach a state where yi ⟨w , xi ⟩ > 0 for all i ∈ [m].

At iteration t, if there is still an i so that yi ⟨w , xi ⟩ ≤ 0, then
we update wt+1 = wt + yixi like this.

This makes sense because
yi ⟨wt+1, xi ⟩ = yi ⟨wt + yixi , xi ⟩ = yi ⟨wt , xi ⟩+ ||xi ||2 ≥ yi ⟨wt , xi ⟩.
So, after each iteration, the constraints are becoming more correct
for a mistaken i . It can also be proven that the algorithm stops
after at most (RB)2 iterations where R = maxi ||xi || and
B = min{||w || : ∀i ∈ [m], yi ⟨w , xi ⟩ ≥ 1} and when it stops it holds
that ∀i ∈ [m], yi ⟨w , xi ⟩ ≥ 1. The proofs are left to the readers for
exercise.

Md Zahidul Hasan Machine Learning

Linear Regression

Regression is the task of estimating the value of one variable that’s
dependent on other variables. For example: determining the rent
of a house is a function of the area of the house by square feet, the
number of bedrooms, location and other facilities or estimating the
salary of a person as a function of his educational background and
skill-set etc. There are lots of regression models. We will discuss
only the linear model here. But the best in practice are Kernel
Ridge regression, Support Vector regression, Lasso etc. Imagine
that the features of a house can be numerically expressed as the
following vector x = (x1, x2, · · · , xd) where x1 can mean the
number of kitchens or x2 can mean whether there is a gym in the
building or not. In problems where a change in the independent
variables leads to a linear change in the dependent variables, linear
regression is a perfect solution. Our linear hypothesis is that if y is
the house rent, then,
y = hw (x) = w1x1 + w2x2 + · · ·+ wdxd + wd+1 where wd+1 = b
and we can extend x by setting xd+1 = 1.

Md Zahidul Hasan Machine Learning

Multivariate Linear Regression

Imagine that the features of a house can be numerically expressed
as the following vector x = (x1, x2, · · · , xd) where x1 can mean the
number of kitchens or x2 can mean whether there is a gym in the
building or not. Our linear hypothesis is that if y is the house rent,
then, y = hw (x) = w1x1 + w2x2 + · · ·+ wdxd + wd+1

So, if we extend the vector x by one dimension by appending a
dummy 1 at the end x = (x1, x2, · · · , xd , 1), we can express y as
follows, y = wT x = ⟨x ,w⟩ where w = (w1,w2, · · · ,wd ,wd+1) So,
if we are given m data points (x (1), y (1)), (x (2), y (2)), · · · ,
(x (m), y (m)), the squared error should be:
E =

∑m
i=1(y

(i) − ⟨w , x (i)⟩)2
We can express the above equation in the following matrix form:

E (W) = ||Y − XTW ||2.

Md Zahidul Hasan Machine Learning

Multivariate Linear Regression contd.

where, Y =


y (1)

y (2)

.

y (m)

 ,X =


x
(1)
1 x

(2)
1 . x

(m)
1

x
(1)
2 x

(2)
2 . x

(m)
2

. . . .

x
(1)
d+1 x

(2)
d+1 . x

(m)
d+1

 ,W =


w1

w2

.
wd+1


We want to solve for a W so that the error is minimized. Since E
is convex and differentiable, it admits a global minimum at a
certain W where ∇E (W) = 0.
In other words, 2X (XTW − Y) = 0 or XXTW = XY . If XXT is
invertible, then there is a unique solution, W = (XXT)−1XY .
Otherwise, we can get a family of solutions,

W = (XXT)+XY + (I − (XXT)+XXT)A

where A is an arbitrary matrix and (XXT)+ is the Moore-Penrose
Pseudoinverse of XXT . The solution with the smallest norm is
achieved when A = 0. The overall complexity of the solution is
O((m + d)d2)

Md Zahidul Hasan Machine Learning

Univariate Linear Regression

Let’s say, we only have one feature. So, our linear hypothesis is
very simple. hw (x) = w1x + w2

So, the loss over the whole data set can be formulated as,
E (W) =

∑m
i=1(yi − (w1xi + w2))

2

We want to find values of w1 and w2 so that E is minimized. That
will happen when ∂E

∂w1
= 0 and ∂E

∂w2
= 0. These two equations lead

to,

2
∑m

i=1(yi − (w1xi + w2))xi = 0 and 2
∑m

i=1(yi − (w1xi + w2)) = 0

Here, we have two equations with two variables.
w1

∑m
i=1 x

2
i + w2

∑m
i=1 xi =

∑m
i=1 xiyi

w1
∑m

i=1 xi + w2
∑m

i=1 1 =
∑m

i=1 yi

Solving for w1 and w2 yields, w1 =
m(

∑m
i=1 xiyi)−(

∑m
i=1 xi)(

∑m
i=1 yi)

m(
∑m

i=1 x
2
i)−(

∑m
i=1 xi)

2

w2 =
(
∑m

i=1 x
2
i)(

∑m
i=1 yi)−(

∑m
i=1 xi)(

∑m
i=1 xiyi)

m(
∑m

i=1 x
2
i)−(

∑m
i=1 xi)

2

Md Zahidul Hasan Machine Learning

The Sigmoid Function

The hard threshold function sign(⟨w , x⟩) is not continuous and
differentiable. To make learning a more predictable endeavour, we
can use the logistic function to determine the probability of our
output being 1 given that we are trying to classify points into the
class {0, 1} which is as follows:

L(hw (x)) =
1

1+e−hw (x)

The value of this function approaches 1 as hw (x) approaches +∞
and as its value approaches −∞, the function’s value approaches 0.

Md Zahidul Hasan Machine Learning

Logistic Regression

Instead of the hard threshold function, we can use the
logistic/sigmoid function for classification. If L(hw (x)) ≥ 1

2 , then
the output is +1, otherwise it’s -1. Some suitable loss functions
would be:

ℓ(hw , (xi , yi)) = log(1 + e−yi ⟨w ,xi ⟩) if yi , hw (xi) ∈ {−1,+1}
ℓ(hw , (xi , yi)) = −yi log hw (xi)− (1− yi) log (1− hw (xi)) if

yi , hw (xi) ∈ {0, 1}

So, our ERM solution will be the following:

argminw∈Rd
1
m

∑m
i=1 log(1 + e−yi ⟨w ,xi ⟩)

The advantage of the above loss function is that it’s convex,
continuous and differentiable. But how did we come up with these
objective functions?

Md Zahidul Hasan Machine Learning

Softmax Regression

Logistic regression is a binary classifier. But what if, we have k
classes. If our input has n features, then we could learn a linear
function for each output class as follows:
o1 = w1,1x1 + w1,2x2 + · · ·+ w1,nxn + b1
o2 = w2,1x1 + w2,2x2 + · · ·+ w2,nxn + b2
· · ·
ok = wk,1x1 + wk,2x2 + · · ·+ wk,nxn + bk
Then, we could output a distribution over the k output classes
using the softmax function. The softmax function looks like the
following:
softmax(x) = [ex1∑n

i=1 e
xi
, ex2∑n

i=1 e
xi
, · · · , exn∑n

i=1 e
xi
]

So, our output distribution will be:
softmax(o) = [eo1∑k

i=1 e
oi
, eo2∑k

i=1 e
oi
, · · · , eok∑k

i=1 e
oi
]

But how do we measure the error? How can we come up with an
objective function to minimize? That’s what we will see in the
next lecture.

Md Zahidul Hasan Machine Learning

