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Weak Learners

We have already seen that there are hypothesis classes that can be
learned very accurately with high probability but yet they are
computationally infeasible. But what if we could learn a hypothesis
class that performs weakly and somehow aggregate these weak
learners to get arbitrarily good performance? In fact, we could also
directly calibrate the bias-complexity trade-off. A weak binary
classifier is one that performs slightly better than a coin toss.

Weak Learners

A learning algorithm A is said to be a λ−weak learner with
0 ≤ λ ≤ 1

2 for a hypothesis class H if there exists a sample size
m ≥ poly(1δ ) such that for any δ ∈ (0, 1), for any distribution D
over X , for any labeling function f : X → {1,−1}, if the
realizability assumption holds, then when the algorithm is run with
a sample size of at least m, then the following holds:

Pr [RD(h) ≤ 1
2 − λ] ≥ 1− δ.
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Learning Intervals Using Thresholds

An interval function is defined as follows where b ∈ {−1,+1} and
θ1, θ2 ∈ R:

hθ1,θ2,b(x) =

{
−b if θ1 ≤ x ≤ θ2

+b otherwise

We will weakly learn an interval function using the class of
threshold functions ( i.e. fθ,b(x) = sign(θ − x).b where
b ∈ {+1,−1}). Notice that an interval divides the real line into 3
pieces. Using a threshold function, we can always match the sign
of any two of the pieces. One of the three pieces will have at most
1
3 probability of containing a point. Except this one, let’s match
the signs of the other pieces. In that case, our error is at most
1
3 = 1

2 − λ with λ = 1
6 .
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Efficient Implementation of ERM for Learning Intervals

Solving this problem for multidimensional points can be done
independently for each dimension. So, we solve this problem for
the one-dimensional case only. Suppose, we are given a sample of
m points S = {(x1, y1), (x2, y2), · · · , (xm, ym)} and a distribution
vector D so that Di represents the importance of (xi , yi ) in
predicting the generalization error RD(h). So,

RD(h) =
∑m

i=1Di1h(xi ) ̸=yi

We want to find a θ ∈ R so that hθ,1(x) = sign(θ − x) can
minimize this error. The case for hθ,−1 can be solved analogously.
Notice that, first we have to sort the points based on their xi . We
will have to find a θ ∈ R. Our search space is huge. But we can
reduce it down to Θ = {θ0, θ1, · · · , θm} where for 1 ≤ i < m,
θi =

xi+xi+1

2 , θ0 = −∞ and θm = +∞.
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Efficient Implementation of ERM for Learning Intervals

We can rewrite the generalization in terms of the choice of θ as
follows:

RD,θ(h) =
∑

i :yi=1Di1θ<xi +
∑

i :yi=−1Di1θ>xi

From this we can derive that,
RD,θi+1

= RD,θi − Di1yi=1 + Di1yi=−1 = RD,θi − Diyi .
By using this formula, we can compute the generalization error if
we chose m + 1 different θ.
Complexity Analysis: The sorting takes O(m logm) calculations.
Then computing the generalization errors take O(m) operations.
So, the overall computational complexity is O(m +m logm).
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AdaBoost
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Adaboost Explained

Adaboost has access to a weak learner that can return a weak
hypothesis with error 1

2 − λ for λ ∈ (0, 12 ].

Initially AdaBoost assumes that all of the samples are equally
important during learning. So, it initializes the weights as
D(1) = ( 1

m , · · · , 1
m ).

In each iteration i , AdaBoost invokes the weak learner with
the distribution D(i). Then it computes the estimated
generalization error for the returned hypothesis.

The returned hypothesis is assigned a weight that is inversely
proportionally to the error it makes.

AdaBoost then updates the distribution. A data sample gets
high probability if it had high probability in the previous round
and also if the returned hypothesis makes a mistake on this
data instance. It’s identified as a problematic data instance.

The final prediction is a weighted aggregate of the individual
predictions of all the returned hypotheses.
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Empirical Risk Bound for AdaBoost

Theorem

Let S be a training set and assume that AdaBoost returns a weak
hypothesis at each iteration with ϵt ≤ 1

2 − λ. Then the training
error of the output hypothesis of AdaBoost is bounded as follows:

RS(hAB) =
1
m

∑m
i=1 1hAB(xi )̸=yi ≤ e−2λ2T

Proof: For each iteration t, let ft =
∑t

i=1 wihi and for each ft ,
let’s define Zt =

1
m

∑m
i=1 e

−yi ft(xi ) ≥ 1
m

∑m
i=1 1ft(xi )̸=yi = RS(ft).

We just need to prove that, RS(hAB) = RS(fT ) ≤ ZT ≤ e−2λ2T . In
fact, we can prove that, Zt

Zt−1
≤ e−2λ2

for all t. Using induction, we
can see that,

D
(t+1)
i =

D
(t)
i e−wtyi ht (xi )∑m

j=1 D
(t)
j e

−wtyj ht (xj )
= e−yi ft (xi )∑m

j=1 e
−yj ft (xj )
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Empirical Risk for AdaBoost Upper Bound

So,

Zt
Zt−1

=
1
m

∑m
i=1 e

−yi ft (xi )

1
m

∑m
i=1 e

−yi ft−1(xi )

=
∑m

i=1 e
−yi ft (xi )∑m

i=1 e
−yi ft−1(xi )

=
∑m

i=1 e
−yi (ft−1(xi )+wtht (xi ))∑m
i=1 e

−yi ft−1(xi )

=
∑m

i=1 e
−yi ft−1(xi )−yi wt ht (xi )∑m
i=1 e

−yi ft−1(xi )
=

∑m
i=1

e−yi ft−1(xi )∑m
j=1 e

−yj ft−1(xj )
e−yiwtht(xi )

=
∑m

i=1D
(t)
i e−yiwtht(xi )

=
∑

i :yiht(xi )=1D
(t)
i e−wt +

∑
i :yiht(xi )=−1D

(t)
i ewt

= (1− ϵt)e
−wt + ϵte

wt

= 1−ϵt√
1
ϵt
−1

+ ϵt

√
1
ϵt
− 1

= 2
√

ϵt(1− ϵt)
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Upper Bound Proof

We want to maximize a function of the form f (a) = a(1− a). But
this function is strictly increasing in the interval [0, 12 ]. Since,
ϵt ≤ 1

2 − λ,

2
√
ϵt(1− ϵt) ≤ 2

√
(12 − λ)(12 + λ) =

√
1− 4λ2

Since, 1 + x ≤ ex for all x ∈ R, 1− 4λ2 ≤ e−4λ2
. So, we have√

1− 4λ2 ≤ e−2λ2
.

So, we have proved that, Zt
Zt−1

≤ e−2λ2
.

So, ZT
Z0

= ZT
ZT−1

ZT−1

ZT−2
· · · Z1

Z0
≤ e−2Tλ2

.

Since f0 ≡ 0, Z0 =
1
m

∑m
i=1 e

−yi0 = 1. So,

RS(hAB) ≤ ZT ≤ e−2Tλ2
.

From this, we can say that, limT→∞ RS(hAB) = 0. So, having too
many iterations can lead to overfitting.
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Managing the Bias-Complexity Trade-Off using T

In the previous example, our weak hypothesis class was the
following: HDS = {h : h(x) = sign(x − θ).b, θ ∈ R, b ∈ {−1, 1}}
And the strong hypothesis class is the following: L(HDS ,T ) = {f :
f (x) = sign(

∑T
i=1 wihi (x)),w ∈ RT ,∀i , hi ∈ HDS}

It can be proven that L(HDS ,T ) includes all piece-wise constant
classifiers with at most T pieces. Therefore,

VCdim(L(HDS ,T )) ≥ T + 1.

So, as T increases, so does the VC dimension of our hypothesis
class. If the VC dimension increases, then the complexity of the
hypothesis increases. As the complexity increases, the
approximation error of the hypothesis is reduced. But the
estimation error increases. So, it gets more difficult to find best
the hypothesis in the class. Hence, the number of iterations T
directly influences the bias vs complexity trade-off. So, by tuning
T , we attain the optimum performance of boosting.
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